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Abstract

A theoretical study of the propagation of a plane wave in a material with nonlinear response is
presented. We start with the wave equation for an isotropic, homogeneous, elastic solid with
cubic anharmonicity in the moduli, accounting for attenuation by introducing complex linear
and nonlinear moduli. A heirarchy of equations, ordered in powers of the displacement field, is
developed. Using a Green function technique, we solve this set of equations systematically for
the displacement field at distance x from the source. We examine the influence of propagation
distance, source frequency spectrum, source displacement amplitude, attenuation, and nonlinear
coefficient on the spectrum of a propagating wave. The displacement field for various source
functions is calculated using parameters typical of rocks.
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Introduction

In this paper we consider the nonlinear interaction
of frequency components in large-amplitude elastic
waves in rocks. Compared to other, more ordered
solids, rocks are highly elastically nonlinear. Because
of the presence of structural defects such as microc-
racks and grain boundaries, the effective moduli in
rocks change dramatically as a function of stress.
The ratio of third-order elastic constants to second-
order elastic constants in sandstone is typically or-
ders of magnitude greater than in solids such as iron
[Nazarov et al., 1988]. This high degree of nonlin-
earity means that frequency components mix and en-
ergy is transferred from the fundamental frequencies
to sum and difference frequencies. We are currently
interested in three potential applications of nonlinear
effects in rocks. (1) We are interested in modeling
of explosion and earthquake sources, where we as-
sume large amounts of energy are transferred from
the source frequency spectrum to higher and lower
frequencies. The received seismic frequency spectrum
may be only distantly related to the original-source
frequency spectrum. (2) We are interested in cre-
ating a low-frequency seismic source by mixing two
high-frequency sources. In general, the lower the fre-
quency desired for a seismic survey, the larger the
source must be. (3) We are interested in measuring
nonlinear coefficients of highly disordered solids like
rocks. Consolidation and saturation conditions cause
large deviations in the measured nonlinear coefficients
of similar rocks. Therefore accurate measurement of
nonlinear terms can be a sensitive measure of consol-
idation and saturation.

The purpose of this paper is to develop and illus-
trate a theoretical framework for investigating these
problems that has conceptual clarity and is easy to
implement numerically. In the next section we derive
the equation of motion for the displacement field from
an energy functional that is correct to third order
in the strain. We introduce attenuation into the de-
scription of the displacement field through a model in
which the displacement derivative has instantaneous
and retarded (in time) components. This model is
discussed in the appendix. The resulting equation of
motion for the displacement field lets us classify the
forces that drive the displacement field as linear elas-
tic, linear attenuative, nonlinear elastic, or nonlinear
attenuative.

We solve the equation of motion for the displace-
ment field by developing the solution in terms of the

exact solution of the linear problem. Thus we em-
ploy a Green function technique. We illustrate use of
this technique in the general solution section, where
we work through the case of plane waves propagat-
ing with linear elasticity, linear attenuation, nonlinear
elasticity (cubic anharmonicity), and nonlinear atten-
uation. The analytic structure of the equation sug-
gests the following physical description of the phe-
nomena. (1) The system is initially disturbed by an
external source, e.g., a transducer at the origin. (2)
The Green function describes propagation of the dis-
placement field resulting from this disturbance into
the interior of the system. (3) In the interior of the
system, the nonlinearity acts on the displacement field
to produce an internal source. (4) The Green function
works again to carry the displacement consequences
of this internal source to the detector.

This physical picture lends itself to generalization.
For example, the retarded component of the stress
field is quite possibly characterized by a spectrum
of relaxation rates [Day and Minster, 1984]. The
Green function for the corresponding linear problem
is relatively complicated. However, there are well-
known procedures for constructing an average Green
function that faithfully describes such a circumstance.
This Green function can be inserted into the relevant
equations in place of the exact Green function with
no other changes in the structure of the solution.

The section on specific solution contains a de-
scription of a specific Green function for an infinite
medium and the resulting displacement components
to first order in the nonlinearity. In the section of ex-
amples we describe analytical and numerical results
for nonlinear wave propagation in two realistic phys-
ical situations. In the first example we use a contin-
uous sine wave source to derive an analytic displace-
ment to first order in the nonlinearity. In the limit
of low attenuation, these results agree with those of
Polyakova [1964] and others. In the second example
we use a broadband source to study the effect of non-
linear response on seismic propagation. A summary
of our conclusions is given in the final section.

Formulation of Problem

The derivation of the equations of motion for a ho-
mogeneous solid, including first-order nonlinear elas-
tic terms and linear attenuation, has been described
many times. In order to be complete and to fix no-
tation, we sketch a synthesis of the derivations pre-
sented by Landau and Lifshitz [1959], Murnaghan
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[1951], Polyakova [1964], and Green [1973].

The equation of motion for elastic wave propaga-
tion is

ρüi = ∂σij/∂xj , (1)

where ρ is the density of the undeformed solid, ui is
the particle displacement along coordinate i, σij is
the i j component of the stress tensor, and xj is the
jth coordinate. Conventional summation notation is
used. The stress tensor is given by

σij =
∂E

∂(∂ui/∂xj)
, (2)

where E is the internal energy density of a homoge-
neous, elastic solid. Including third-order terms in the
strain, the internal energy density may be written

E =
λ+ 2µ

2
I2
1−2µI2+

`+ 2m

3
I3
1−2mI1I2+nI3 , (3)

where λ and µ are second-order elastic constants
(Lamé coefficients); `, m, and n are third-order elas-
tic constants (Murnaghan coefficients); and I1, I2, I3
are the three invariants of the strain tensor:

I1 = εii ,

I2 =

∣∣∣∣
ε22 ε23
ε32 ε33

∣∣∣∣+
∣∣∣∣
ε33 ε31
ε13 ε11

∣∣∣∣+
∣∣∣∣
ε11 ε12
ε21 ε22

∣∣∣∣ ,
I3 = det εij ,

(4)
where the components of the strain tensor are given
by

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂uj

)
. (5)

For simplicity, we restrict ourselves to the prob-
lem of wave propagation in a single direction, the x
direction. Combining (1)–(5) and keeping terms to
second order in the displacement field, the equations
of motion for the displacement field are [Gol’dberg,
1960]:

ρüx = (λ+ 2µ)
∂2ux
∂x2

+ S′x

+
1

2
[3(λ + 2µ) + 2(`+ 2m)]

∂

∂x

(
∂ux
∂x

)2

+
1

2
(λ + 2µ+m)

∂

∂x

[(
∂uy
∂x

)2

+

(
∂uz
∂x

)2
]
,

(6a)

ρüy = µ
∂2uy
∂x2

+ S′y

+(λ+ 2µ+m)
∂

∂x

(
∂ux
∂x

∂uy
∂x

)
, (6b)

ρüz = µ
∂2uz
∂x2

+ S′z

+(λ+ 2µ+m)
∂

∂x

(
∂ux
∂x

∂uz
∂x

)
. (6c)

Here S′i(x, t) is the external source that initiates the
response of the system. These equations describe a
system having linear and nonlinear elasticity (cubic
anharmonicity).

In the frequency domain an explicit Green function
can be found for the problem involving linear elastic-
ity and linear attenuation. Therefore define ui(x, ω)
and S′i(x,ω) such that

ui(x, t) =

∫ ∞

−∞

dω

2π
ui(x, ω)e−iωt , (7a)

S′i(x, t) =

∫ ∞

−∞

dω

2π
S′i(x,ω)e−iωt . (7b)

We introduce attenuation by allowing the spatial
derivative of the displacement to have a component
that is retarded in time (see the appendix). We let

∂ui(x,ω)

∂x
→ χ(ω)

∂ui(x, ω)

∂x
, (8)

where

χ(ω) = 1− ∆

1− sgn(ω)i|ωτ |ν
, (9)

∆ can be thought of as the fractional amount of
the displacement derivative that is retarded in time
(0 ≤ ∆ ≤ 1), and τ is the characteristic damping
time. In the linear case the factor χ(ω) is equivalent
to the complex factor multiplying real moduli in the
standard solid model of a series Voigt unit and spring
[Nowick and Berry, 1972], that is, M → χ(ω)M ,
where M is a modulus. We have made a general-
ization of the standard form by adding the power ν.

To be more general, we could allow the complex
part of χ to depend on the displacement component.
By making the assumption that τ , ν , and ∆ are the
same for all displacement components, we are mak-
ing the assumptions that the dimensionless measure
of anelasticity Q of the system is the same for both
compressional and shear waves and that both types
of waves experience the same velocity shift from low
to high frequency. Defining Q−1 = −Im(χ)/Re(χ)
[O’Connell and Budiansky, 1978], we find

Q−1 =
sgn(ω)∆|ωτ |ν

1−∆ + |ωτ |2ν
. (10)

For ν = 0, we find a constant Q result. For ν 6= 0,
the linear moduli and Q have low- and high-frequency
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limits. For low frequencies, |ωτ | ¿ 1,

χ(ω) → (1−∆) − sgn(ω)i|ωτ |ν∆ (11a)

and Q−1 → sgn(ω)|ωτ |ν∆/(1−∆). For high frequen-
cies, |ωτ | À 1,

χ(ω) → 1− sgn(ω)i|ωτ |−ν∆ (11b)

and Q−1 → sgn(ω)|ωτ |−ν∆. In both limits the linear
moduli have a small residual complex component. At
low frequency the real linear moduli are a factor of
1−∆ smaller than at high frequency. The parameters
∆, τ , and ν may be derived from measurements of
Q−1 as a function of frequency.

General Solution Using Green Function

We write the equations of longitudinal (L) and
transverse (T) motion, (6a)–(6c), in the frequency do-
main by using the relation for attenuation in (8), the
Fourier transforms of (7a) and (7b), and the convolu-
tion theorem for Fourier transforms. The equations
of motion are

g−1
L (x, ω)ux(x,ω) = −Sx(x, ω)

−β ∂

∂x

∫
dω′

2π
χ(ω′)χ(φ)

∂ux(x,ω
′)

∂x

∂ux(x, φ)

∂x

−γ ∂

∂x

∫
dω′

2π
χ(ω′)χ(φ)

[
∂uy(x,ω

′)

∂x

∂uy(x, φ)

∂x

+
∂uz(x,ω

′)

∂x

∂uz(x, φ)

∂x

]
, (12a)

g−1
T (x, ω)uy(x,ω) = −Sy(x, ω)

−2γ
c2L
c2T

∂

∂x

∫
dω′

2π
χ(ω′)χ(φ)

∂ux(x,ω
′)

∂x

∂uy(x, φ)

∂x
,

(12b)

g−1
T (x, ω)uz(x,ω) = −Sz(x,ω)

−2γ
c2L
c2T

∂

∂x

∫
dω′

2π
χ(ω′)χ(φ)

∂ux(x,ω
′)

∂x

∂uz(x, φ)

∂x
,

(12c)

where

g−1
L (x,ω) = χ(ω)

∂2

∂x2
+ k2

L, (13a)

g−1
T (x, ω) = χ(ω)

∂2

∂x2
+ k2

T , (13b)

β =
3(λ+ 2µ) + 2(` + 2m)

2(λ+ 2µ)
, (14a)

γ =
λ+ 2µ+m

2(λ+ 2µ)
, (14b)

k2
L = ω2/c2L, k2

T = ω2/c2T , c2L = (λ+2µ)/ρ, c2T = µ/ρ,
Si = S′i/(λ+2µ), and φ = ω−ω′. The linear terms in
the equations of motion, (12a)–(12c), are on the left-
hand side in the operators g−1

L and g−1
T . The right-

hand sides of (12a)–(12c) have two kinds of sources,
the external sources Si(x, ω) and the internal sources
due to the nonlinearity.

To obtain a systematic Green function solution to
(12a)–(12c), we use a parameter η (0 < η ≤ 1) to keep
track of powers of the internal source. We expand the
displacement and source functions in powers of η;

ui(x,ω) = u
(0)
i (x, ω)+ηu

(1)
i (x, ω)+η2u

(2)
i (x,ω)+ . . . ,

(15a)

fi(x, ω) = f
(0)
i (x,ω)+ηf

(1)
i (x, ω)+η2f

(2)
i (x,ω)+ . . . ,

(15b)

where f
(0)
i (x,ω) is the external source function Si(x,ω).

In the examples we set η ≡ 1 and consider only cases

where |u(n+1)
i |/|u(n)

i | < 1 and the expansion for ui is
convergent. The first few terms in the expansion of
the source function are given by

f (0)
x (x, ω) = Sx(x,ω), (16a)

f (1)
x (x, ω) =

∂

∂x

∫
dω′

2π
χ(ω′)χ(φ)

{
γ

[
∂u

(0)
y (x,ω′)

∂x

·∂u
(0)
y (x, φ)

∂x
+
∂u

(0)
z (x,ω′)

∂x

∂u
(0)
z (x, φ)

∂x

]

+β
∂u

(0)
x (x,ω′)

∂x

∂u
(0)
x (x, φ)

∂x

}
, (16b)

f (2)
x (x, ω) =

∂

∂x

∫
dω′

2π
χ(ω′)χ(φ)

{
2γ

[
∂u

(0)
y (x,ω′)

∂x

·∂u
(1)
y (x, φ)

∂x
+
∂u

(0)
z (x,ω′)

∂x

∂u
(1)
z (x, φ)

∂x

]

+2β
∂u

(0)
x (x,ω′)

∂x

∂u
(1)
x (x, φ)

∂x

}
, (16c)

f (0)
y (x, ω) = Sy(x,ω), (16d)

f (1)
y (x, ω) =

∂

∂x

∫
dω′

2π
χ(ω′)χ(φ)

·2γ c
2
L

c2T

∂u
(0)
x (x, ω′)

∂x

∂u
(0)
y (x, φ)

∂x
, (16e)

f (2)
y (x, ω) =

∂

∂x

∫
dω′

2π
χ(ω′)χ(φ)2γ

c2L
c2T

[
∂u

(0)
x (x, ω′)

∂x

·∂u
(1)
y (x, φ)

∂x
+
∂u

(1)
x (x,ω′)

∂x

∂u
(0)
y (x, φ)

∂x

]
,
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(16f)

etc. Equating like powers of η, we obtain a hierarchy
of equations that allows us to solve for the displace-
ment field to any desired order:

g−1
L (x,ω)u(n)

x (x,ω) = −f (n)
x (x,ω), (17a)

g−1
T (x,ω)u

(n)
j (x,ω) = −f (n)

j (x,ω), j = y, z.

(17b)

Note that to solve for each successive order in the
displacement, we require knowledge of all preceding

solutions. For example, the source function for u
(2)
x is

determined by u
(0)
x , u

(1)
x , u

(0)
y , u

(1)
y , u

(0)
z , and u

(1)
z .

Equations (17a) and (17b) can be solved analyti-
cally using the Green function that satisfies

g−1
ι (x,ω)gι(x, x

′, ω) = −δ(x− x′) , ι = L, T ,
(18)

and the appropriate value of k (kL = ω/cL for ux and
kT = ω/cT for uy and uz). These Green functions
are used to solve (17a) and (17b) for the displacement
fields in the form of an integral over a product of a
Green function and a source function:

u
(n)
i (x, ω) =

∫
dx′gι(x, x

′, ω)f
(n)
i (x′, ω) , ι = L,T.

(19)
The total displacement to order n in frequency space

is the sum of n terms ui(x, ω) = u
(0)
i (x,ω)+u

(1)
i (x,ω)+

. . .+ u
(n)
i (x,ω), where η → 1 in (15a). For example,

if Sy = Sz = 0 and Sx = S(x′, ω), then the first two
terms in ux(x, ω) are

u(0)
x (x, ω) =

∫
dx′gL(x, x′, ω)S(x′, ω), (20a)

u(1)
x (x, ω) = β

∫
dx′gL(x, x′, ω)

∫
dω′

2π
χ(ω′)χ(φ)

· ∂
∂x′

[∫
dx′′

∂gL(x′, x′′, ω′)

∂x′
S(x′′, ω′)

·
∫
dx′′′

∂gL(x′, x′′′, φ)

∂x′
S(x′′′, φ)

]
.

(20b)

The Green function method of solution has concep-
tual clarity and flexibility. Pictorially, (20a), (20b),

and the analog for u
(2)
x for a purely compressional

source are illustrated in Figure 1. We read (20b)
from right to left and relate the equation to u1 in Fig-
ure 1. We see that the linear Green function acts on

the source to propagate two separate waves from the
source location to point x′, the integral on ω′ causes
the frequency spectra of the two waves to interact
with strength β, the Green function propagates the
resulting source from x′ to x (the point of observa-
tion), and the integral on x′ sums the results for in-
teractions occurring all along the wave propagation
path. The solution has flexibility in that it works for
an arbitrary source, allowing one to choose an explicit
Green function for a specific geometry or an empirical
Green function derived from experiment.

Specific Solution

Specific solutions to (19) depend on our choices of
Green function and external source. We have chosen
to study the same geometry (an infinite solid) and
therefore to use the same Green function for all of
the examples described in the next section. Neverthe-
less, the examples apply to a broad range of problems
depending on the external source and the physical
characteristics to be studied.

The solution to (18) for the Green function of an
infinite medium is

gι(x, x
′, ω) =

i

2Aι(ω)χ(ω)
eiAι(ω)|x−x′| , ι = L, T,

(21)
where

Aι(ω) = κι(ω) + iαι(ω) , (22a)

κι(ω) = kι

√
r + s

2 [(1−∆)2 + |ωτ |2ν ] , (22b)

αι(ω) = |kι|
√

r − s

2 [(1 −∆)2 + |ωτ |2ν ] , (22c)

r =
√
s2 + |ωτ |2ν∆2 , (22d)

s = (1 −∆) + |ωτ |2ν . (22e)

The functions κι(ω) and αι(ω), (22b) and (22c),
define the dispersion relation and the attenuation in
the system. If ∆ = 0, then κι = kι, αι = 0 and
we recover the Green function for propagation in an
infinite medium in the absence of attenuation. The
following asymptotic expressions for κι(ω) and αι(ω)
can be derived:

κι/kι → 1/
√

1−∆, |ωτ | ¿ 1,
κι/kι → 1, |ωτ | À 1,
αι/|kι| → |ωτ |ν∆/2(1 −∆)3/2, |ωτ | ¿ 1,
αι/|kι| → |ωτ |−ν∆/2, |ωτ | À 1.

(23)
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As we pass from |ωτ | ¿ 1 through |ωτ | = 1 to
|ωτ | À 1, the normalized wave vector changes from
one constant value to a lower constant value, while
the normalized attenuation changes from an |ω|ν de-
pendence to an |ω|−ν dependence.

Given the Green function in (21) and the source
functions in (16a)–(16f), the solution for the displace-
ment field begins with the terms involving the exter-

nal sources f
(0)
i (x, ω). Since the y and z directions

are identical by symmetry, we choose f
(0)
z (x,ω) = 0

and write f
(0)
x (x,ω) and f

(0)
y (x, ω) as sources at the

origin of the form

f (0)
x (x, ω) = −2iχ(ω)AL(ω)ULδ(x)F (ω) ,(24a)

f (0)
y (x, ω) = −2iχ(ω)AT (ω)UT δ(x)F (ω) ,(24b)

where UL and UT are the longitudinal and trans-
verse displacement fields produced at the origin by
the source, and F (ω) is the frequency spectrum of

the source with units of time. Substituting f
(0)
i (x,ω)

into (19), we find that the linear components of the
displacement are

u(0)
x (x, ω) = UL e

iAL(ω)|x|F (ω) , (25a)

u(0)
y (x, ω) = UT e

iAT (ω)|x|F (ω) , (25b)

u(0)
z (x, ω) = 0 . (25c)

The source functions f
(1)
i , (16b) and (16e), for

the first-order nonlinear displacement terms are de-
termined by the linear displacement terms in (25a)–
(25c). These first-order source functions yield first-
order nonlinear displacements of the form

u(1)
x (x, ω) = βU2

LxELL(x,ω) + γU2
TxETT (x, ω),

(26a)

u(1)
y (x, ω) = γULUTx

2c2L
c2T

ELT (x,ω), (26b)

u(1)
z (x, ω) = 0, (26c)

where

ELL(x,ω) =

∫
dω′

2π

ei[AL(ω′)+AL(φ)]|x| − eiAL(ω)|x|

i[AL(ω′) + AL(φ)− AL(ω)]|x|
·CLL(ω, ω′)F (ω′)F (φ), (27a)

ETT (x,ω) =

∫
dω′

2π

ei[AT (ω′)+AT (φ)]|x| − eiAL(ω)|x|

i[AT (ω′) + AT (φ)− AL(ω)]|x|
·CTT (ω, ω′)F (ω′)F (φ), (27b)

ELT (x,ω) =

∫
dω′

2π

ei[AL(ω′)+AT (φ)]|x| − eiAT (ω)|x|

i[AL(ω′) + AT (φ) − AT (ω)]|x|
·CLT (ω,ω′)F (ω′)F (φ), (27c)

and

CLL(ω, ω′) =
AL(ω′)AL(φ)[AL(ω′) + AL(φ)]

AL(ω′) + AL(φ) + AL(ω)

·χ(ω′)χ(φ)

χ(ω)
, (28a)

CTT (ω, ω′) =
AT (ω′)AT (φ)[AT (ω′) +AT (φ)]

AT (ω′) + AT (φ) +AL(ω)

·χ(ω′)χ(φ)

χ(ω)
, (28b)

CLT (ω, ω′) =
AL(ω′)AT (φ)[AL(ω′) + AT (φ)]

AL(ω′) + AT (φ) + AT (ω)

·χ(ω′)χ(φ)

χ(ω)
. (28c)

The results in (26a) and (26b) are arranged in the
form of the product of an amplitude with a frequency-
dependent envelope function. For example, the am-
plitude proportional to γ in (26a) is proportional to
U 2
T , as it is due to two transverse waves launched by

the transverse source, and proportional to x, as the
internal source works at all points between the point
of observation and the external source point x = 0.
The other amplitude factors can be understood in the
same way. The envelope functions E(x, ω) describe
the decay of the amplitude due to attenuation. For
example, ETT (x, ω) in (26a) contains the degradation
of the strength of the internal source due to attenua-
tion of the transverse displacement fields causing the
source (the factor exp{−[αT (ω′)+αT (φ)]|x|}) and at-
tenuation of the displacement field between the inter-
nal source point and the point of detection (the factor
exp−αL(ω)|x|).

In the limit of no attenuation, that is, χ(ω) ≡ 1,
the envelope functions become

ELL(x, ω) =

∫
dω′

2π

k′L(kL − k′L)

2
F (ω′)F (φ)eikL|x|,

(29a)

ETT (x,ω) =

∫
dω′

2π

k′TkT (kT − k′T )

i(k2
T − k2

L)|x| F (ω′)F (φ)

·
(
eikT |x| − eikL|x|

)
, (29b)

ELT (x, ω) =

∫
dω′

2π

k′L(kT − k′T )(k′L + kT − k′T )

i(k′L − k′T + 2kT )(k′L − k′T )|x|

·F (ω′)F (φ)
(
ei(k

′
L+kT−k′T )|x| − eikT |x|

)
,

(29c)

where k′ = ω′/c. Note that the linear x dependence
of the amplitudes in (26a) and (26b) will cancel with
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the x dependence of the envelope functions in all but
the longitudinal-longitudinal wave interaction (ELL).

Examples

Continuous Single-Frequency Sine Wave

As the first example we choose the external driv-
ing force to be a continuous single-frequency compres-
sional sine wave at the origin with displacement am-
plitude U . That is, in (24a) and (24b), let UL = U ,
UT = 0, and

F (ω) = 2π
1

2i
[δ(ω − ω0)− δ(ω + ω0)] . (30)

Displacement occurs only in the x direction.

¿From (25a) and (7a), the linear displacement is

u(0)
x (x, t) =

U

2i

[
ei[AL(ω0)|x|−ω0t] − ei[AL(−ω0)|x|+ω0t]

]
.

(31a)
Equation (31a) reduces to a sine wave modified by
an exponentially decaying envelope in both the high-
and low-frequency limits:

u(0)
x (x, t) → Ue−αm|x| sin(km|x| − ω0t) , (31b)

where

km = kP = ω0/cL
√

1−∆, |ωτ | ¿ 1,
km = k0 = ω0/cL, |ωτ | À 1,
αm = αP = kP (ω0τ)

ν∆/2(1−∆), |ωτ | ¿ 1,
αm = αH = k0(ω0τ)

−ν∆/2, |ωτ | À 1.
(32)

¿From (26a) and (7a), the first-order nonlinear dis-
placement is

u(1)
x (x, t) = −βU

2x

4

[
|χ(ω0)AL(ω0)|2

χ(0)

1− e−2αL(ω0)|x|

2αL(ω0)|x|

+
4

|x|
Im

{
χ2(ω0)A

3
L(ω0)

χ(2ω0)

ei2AL(ω0)|x| − eiAL(2ω0)|x|

4A2
L(ω0)− A2

L(2ω0)

}]
.

(33a)
At low and high frequencies, (33a) reduces to the sum
of a cosine at 2ω0 and a zero frequency term. Both
terms are modified by attenuative exponentials. In
the limit ω0τ ¿ 1,

u(1)
x (x, t) → −βU

2k2
0x

4

[
1− e−2αP |x|

2αP |x|

+
e−2αP |x| − e−21+ναP |x|

2(2ν − 1)αP |x|
cos(2kP |x| − 2ω0t)

]
,

(33b)

in agreement with the results of Polyakova [1964]. In
the limit ω0τ À 1,

u(1)
x (x, t) → −βU

2k2
0x

4

[
1− e−2αH |x|

2(1−∆)αH |x|

+
e−21−ναH |x| − e−2αH|x|

2(1− 2−ν)αH |x|
cos(2k0|x| − 2ω0t)

]
.

(33c)

In Figure 2, we show the transition of the first-order
nonlinear term from ω0τ ¿ 1 to ω0τ À 1 at three
distances from the source. The normalized u

(1)
x (x, t)

values from (33a), (33b), and (33c) are shown as a
function of ω0τ for a source frequency of 10 Hz. The
parameter values are c = 6000 m/s; ∆ = 0.2; ν =
1; and x = 0.6, 6, and 60 km. Since the source is
continuous, we chose t = 0. The dashed curves in
Figure 2 are the ω0τ ¿ 1 results; the dotted curves
are the ω0τ À 1 results.

In the absence of attenuation (αx ¿ 1) we have
the familiar result

ux(x, t) = u(0)
x + u(1)

x = U sin(k0|x| − ω0t)

−βU
2k2

0x

4
[1 + cos(2k0|x| − 2ω0t)],

(34)

to first order in the nonlinearity. Thus the dis-
placement amplitude of the 2ω0 harmonic grows as
the square of the amplitude of the fundamental, the
square of the frequency, linearly with distance, and
linearly with the material parameter β.

For the case discussed here of displacement due to
a compressional source in the x direction, the equa-
tion of motion (6a) may be easily expanded to include
quartic anharmonicity as well as cubic anharmonicity:

1

c2L
üx =

∂

∂x

[
∂ux
∂x

+ β

(
∂ux
∂x

)2

+ δ

(
∂ux
∂x

)3
]

+ Sx ,

(35)
where β and δ are measures of the strength of the cu-
bic and quartic anharmonicity, respectively. Given
the equation of motion in (35), the second-order

source function f
(2)
x becomes

f (2)
x (x,ω) =

∂

∂x

∫
dω′

2π
χ(ω′)

[
δ
∂u

(0)
x (x, ω′)

∂x

·
∫

dω′′

2π
χ(ω′′)χ(ψ )

∂u
(0)
x (x, ω′′)

∂x

∂u
(0)
x (x, ψ )

∂x

+2βχ(φ)
∂u

(0)
x (x, ω′)

∂x

∂u
(1)
x (x, φ)

∂x

]
, (36)
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where ψ = ω − ω′ − ω′′. In the absence of attenua-
tion, the source function (36) leads to a second-order
nonlinear displacement:

u(2)
x (x, t) =

U3k3
0

8

[ (
4β2 − 3δ

)
|x| cos(k0|x| − ω0t)

+

(
3δ

k0
− 4β2

k0
− β2k0x

2

)
sin(k0|x| − ω0t)

+

(
δ

3k0
− 4β2

9k0
− β2k0x

2

)
sin(3k0|x| − 3ω0t)

+

(
4β2

3
− δ

)
|x| cos(3k0|x| − 3ω0t)

]
. (37)

The interactions producing the displacement of (37)
are illustrated in Figure 1. The second-order non-
linear displacement has components at ω0 and 3ω0.
The displacement amplitude grows as the cube of the
amplitude of the fundamental and the cube of the
frequency. At a large propagation distance, the dis-
placement amplitude depends on the square of β and
the square of the propagation distance. Note that the
quartic anharmonic coefficient δ must be of the order
β2 in order to make a significant contribution to the
second order nonlinear displacement. From a litera-
ture study of velocity versus pressure data on a variety
of rock types, this seems to be the case (δ ≈ β2) (G.
D. Meegan, Jr., unpublished data, 1993).

In Figure 3 we show the displacement amplitudes
of each frequency component in (34) and (37). Fig-
ure 3a is a plot of the amplitude at the source fre-
quency and the first two harmonics as a function of
propagation distance. Figure 3b is a plot of the am-
plitude as a function of the source frequency. The
first harmonic (2f) grows linearly with propagation
distance and as the square of the source frequency;
the second harmonic (3f) grows as the square of the
propagation distance and as the fourth power of the
source frequency. The parameters used in the calcu-
lation are U = 5× 10−4 m (corresponding to strains
of order 10−6), cL = 6000 m/s, β = −103 [Meegan et
al., 1993], and δ = −106. In Figure 3a the frequency
f is 3 Hz, and in Figure 3b the propagation distance
x is 10 km. Attenuation is not included.

Broadband Source

A seismic source produces a broadband frequency
spectrum. In order to explore whether nonlinear ef-
fects modify seismic spectra significantly, we chose
UL = U and UT = 0 in (24a) and (24b) and use

F (ω) =
Ω

(iω − Ω)2
, (38a)

as the external source [Yu et al., 1992]. The transform
of (38a) is

F (t) = Ωt e−Ωt . (38b)

As shown in Figure 4, this choice of external source
is band limited in time and has a frequency spectrum
that is flat for low frequencies and falls off as ω−2 for
high frequencies.

In Figure 5 we show the displacement field as a
function of frequency resulting from a source pro-
ducing the frequency spectrum of (38a). We calcu-
lated the received frequency spectrum at four dis-
tances from the source (x = 1, 10, 20, and 40 km)
with linear and first-order nonlinear terms taken into
account, (25a) and (26a). Figure 5a shows the evo-
lution of the frequency spectrum in the absence of
attenuation. Figure 5b shows the evolution of the fre-
quency spectrum where Q ≈ 100. We chose τ , ∆,
and ν such that the model Q is approximately equal
to the measured Q in central California [Mayeda et
al., 1992]. The parameters used in the calculation are
Ω = 40 Hz, U = 10−3 m (corresponding to strains of
order 10−6), cL = 6000 m/s, β = −103 [Meegan et al.,
1993], ∆ = 0.05, ν = 1, and τ = 0.3 s. Clearly, higher
frequencies are being created in the nonlinear inter-
action as a function of propagation distance. Note
especially the decrease in the roll-off slope and corner
frequency in Figure 5b. The amplitudes of sum and
difference frequency components depend on the com-
petition between growth with propagation distance
due to nonlinearity and decay with distance due to
attenuation. These results are in qualitative agree-
ment with the numerical results of Yu et al. [1992]
in a study of nonlinear soil response which concluded
that nonlinearity enhances high frequencies at the ex-
pense of intermediate frequencies.

Conclusions

In this paper we have developed and illustrated
a theoretical framework for investigating the non-
linear interaction of frequency components in large-
amplitude elastic waves. We derived the equation of
motion for the displacement field to third order in
the strain, including attenuation by allowing the dis-
placement derivative to have both instantaneous and
retarded components. We solved the equation of mo-
tion by using the exact Green function solution to the
linear problem and developing higher-order displace-
ment components in terms of the exact solution. This
method has conceptual clarity and a high degree of
flexibility. It is a good approximation to an exact so-
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lution in cases where the energy shift due to nonlinear
terms in the displacement is small (less than 10%), a
limit that applies to many geophysical applications.

We have illustrated the use of the Green function
technique in two examples.

(1) We solved analytically for the displacement
field produced by a continuous single-frequency sine
wave source to first order in the nonlinearity includ-
ing attenuation and to second order in the nonlinear-
ity in the absence of attenuation. We found that the
first-order term, with components at twice the source
frequency and at zero frequency, grows linearly with
propagation distance and nonlinear coefficient and as
the square of the initial displacement and source fre-
quency. Asymptotically, the second-order term grows
as the square of the propagation distance and the non-
linear coefficient and as the cube of the initial dis-
placement and source frequency.

(2) We used a broadband frequency source to study
the effect of first-order nonlinearity on seismic wave
propagation. We found that frequencies above those
in the original source are generated by the first-order
nonlinear interaction in the rock. The high-frequency
contribution to the total frequency spectrum becomes
more pronounced as the wave propagates. After a few
attenuation lengths, the frequency spectrum is dom-
inated by attenuation. Thus the relative effects of
attenuation and nonlinear interaction vary with dis-
tance from the source.

In the examples presented in this paper we used a
single Green function, that of an infinite solid. Many
other applications of the Green function technique are
possible with other Green functions. For example,
one could analytically solve for the Green function
in a bounded medium, or one could use an empirical
Green function derived from a suitable linear exper-
iment. Given a Green function, solving for the dis-
placement field to first order and higher in the nonlin-
earity is straightforward. In this manner, the impor-
tant contributions to the nonlinearity may be studied
independently of each other. The intent of this pa-
per is to illustrate the breadth of the Green function
technique. Careful application to physical situations
is forthcoming.

Appendix: Attenuation

The driving force for the displacement field is the
divergence of the stress field (1), and the stress field is
a functional of the strain field (the spatial derivatives
of the displacement). The intention of this appendix

is to develop a model of the behavior of the system
when the strain field (displacement derivative) is cou-
pled to an internal degree of freedom of the system.
Our interest is in materials like Berea sandstone that
are known to have pervasive structural defects, such
as microcracks and grain boundaries, which may be
fully or partially saturated with fluid. Viewed on a
length scale large compared to individual defects but
small compared to a wavelength, we find that the sys-
tem’s displacement response to a force is delayed due
to the coupling of the defects to the fluid. We model
this delay in terms of a spatial derivative of the dis-
placement that has instantaneous and retarded re-
sponse. Thus, for example, we rewrite (6b) as

ρüy = µ
∂

∂x

(
∂uy
∂x

− ζy

)
+ Sy

+(λ+ 2µ+m)
∂

∂x

[(
∂ux
∂x

− ζx

)(
∂uy
∂x

− ζy

)]
,

(A1)

where ζ is the dimensionless relaxation term govern-
ing the retarded response, satisfying

τ
∂ζi
∂t

+ ζi = ∆
∂ui
∂x

, (A2)

and τ is the relaxation time [Day and Minster, 1984].
The coefficient ∆ is in the range 0 ≤ ∆ ≤ 1. It may be
thought of as the fraction of the stress that is retarded
and might be expected to scale with porosity or some
measure of the defect density. For ∆ = 0, the system
is not attenuative; for ∆ = 1, all of the stress field is
retarded in time.

We solve for ζ in the frequency domain; therefore
define ui(x,ω) and ζi(x,ω) such that

ui(x, t) =

∫
dω

2π
ui(x,ω)e−iωt , (A3)

ζi(x, t) =

∫
dω

2π
ζi(x, ω)e−iωt . (A4)

Then from (A2)

ζi(x,ω) =
∆

1− iωτ

∂ui(x, ω)

∂x
, (A5)

∂ui(x,ω)

∂x
− ζi(x,ω) =

(
1− ∆

1− iωτ

)
∂ui(x,ω)

∂x
.

(A6)
With the addition of an arbitrary power of ωτ , the
coefficient of the displacement derivative on the right-
hand side of (A6) is the χ defined in (9).
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We do not believe that this model has a deep con-
nection to what is actually taking place in the system.
Rather, we wish to model the essential elements of the
behavior of the system in a way that is qualitatively
correct. Further, we do not expect that a single re-
laxation time τ or a single retarded fraction ∆ will
suffice for careful modeling of real systems [Day and
Minster, 1984]. One may develop an effective medium
theory of the linear behavior of the system yielding
suitable τ(ω) and ∆(ω) for such purposes.
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Figure 1. Pictorial description of Green function
method. The displacement is the sum of terms u =
u0+u1+u2+. . ., where u0 is the linear component of the
displacement given by a Green function propagating a
source. The first-order nonlinear term u1 is given by the
Green function propagating two waves from the source
that interact with strength β. The Green function then
propagates the result of the interaction. The second-
order nonlinear term u2 (for a compressional source)
has two terms resulting from the Green function propa-
gating three waves: (1) all three interact with strength
δ; or (2) two interact with strength β, propagate, and
interact with the third with strength β. In both cases
the Green function propagates the result of the interac-
tion to the point of observation x.

Figure 2. Attenuation dependence of the first-order
nonlinear displacement. The normalized first-order
nonlinear displacement is shown as a function of ω0τ .
The solid curves are calculated from (33a) at distances
x = 0.6, 6, and 60 km. The source frequency is 10 Hz,
∆ = 0.2, and ν = 1. The value of τ is varied. The
dashed curves are the low ω0τ limit, (33b); the dotted
curves are the high ω0τ limit, (33c). The crossover from
low to high ω0τ and the point of maximum attenuation
are at ω0τ ≈ 1.

Figure 3. Displacement amplitudes for individual fre-
quency components. Attenuation is not included. Solid
curves are the amplitudes of the source frequency 1f ,
long-dash curves are the amplitudes of the first har-
monic 2f , and short-dash curves are the amplitudes of
the second harmonic 3f . (a) Displacement amplitude as
a function of propagation distance. The 1f amplitude
decreases slightly, the 2f amplitude increases linearly
with distance, and the 3f amplitude increases quadrat-
ically with distance. (b) Displacement amplitude as a
function of source frequency at x = 10 km. The 1f am-
plitude decreases slightly, the 2f amplitude increases
as the square of the frequency, and the 3f amplitude
increases as the fourth power of the frequency.

Figure 4. Broadband source function. (a) Time do-
main, (38b), Ω = 40 rad. (b) Frequency domain, (38a).
This source function is time limited and has a frequency
spectrum that is flat at low frequencies and falls off as
ω−2 at high frequencies, thereby providing a useful ide-
alization of a seismic source.

Figure 5. Displacement frequency spectrum of a
broadband source, (38a). The pulse propagates to x = 1
km, 10 km, 20 km, and 40 km, progressively produc-
ing sum and difference frequencies through a first-order
nonlinear interaction. (a) In the absence of attenua-
tion; (b) including attenuation, Q ≈ 100. The high-
frequency contribution to the spectrum becomes more
pronounced as the wave propagates.
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